skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jassby, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel method for simulating unsteady, variable density, fluid flows in membrane desalination systems. By assuming the density varies only with concentration and temperature, the scheme decouples the solution of the governing equations into two sequential blocks. The first solves the governing equations for the temperature and concentration fields, which are used to compute all thermophysical properties. The second block solves the conservation of mass and momentum equations for the velocity and pressure. We show that this is computationally more efficient than schemes that iterate over the full coupled equations in one block. We verify that the method achieves second-order spatial–temporal accuracy, and we use the method to investigate buoyancy-driven convection in a desalination process called vacuum membrane distillation. Specifically, we show that with gravity properly oriented, variations in temperature and concentration can trigger a double-diffusive instability that enhances mixing and improves water recovery. We also show that the instability can be strengthened by providing external heating. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. NA (Ed.)
    Membrane distillation (MD) is a thermally-driven desalination process that can treat hypersaline brines. Considerable MD literature has focused on mitigating temperature and concentration polarization. This literature largely neglects that temperature and concentration polarization increase the feed density near the membrane. With gravity properly oriented, this increase in density could trigger buoyancy-driven convection and increase permeate production. Convection could also be strengthened by heating the feed channel wall opposite the membrane. To investigate that possibility, we perform a series of experiments using a plate-and-frame direct contact MD system with an active membrane area of 300 cm2 and a feed channel wall heated using a resistive heater. The experiments measure the average transmembrane permeate flux for two gravitational orientations, feed Reynolds numbers between 128 and 1128, and wall heat fluxes up to 12 kW/m2. The results confirm that with gravity properly oriented, wall-heating can trigger buoyancy-driven convection for a wide range of feed Reynolds numbers, and increase permeate production between roughly 20 and 130 %. We estimate, however, that at high Reynolds numbers (𝑅𝑒 > 800), more than 70 % of the wall heat is carried out of the MD system by the feed flow, without contributing to permeate production. This suggests the need for longer membranes and heat recovery steps in any future practical implementation. 
    more » « less